Electric fields as “smart reagents”
Experimental Sciences & Mathematics
Electric fields act as “smart reagents”, triggering and accelerating chemical reactions with precision. While studies on electric-field catalysis focus on single molecules, scaling and reactant transport are often overlooked. Our research uses a large electrode surface to study electrostatic catalysis of Huisgen cycloaddition, comparing it to traditional copper-based methods. With a custom microfluidic reactor, we optimize reactant delivery and showcase a scalable, clean platform for electric-field-driven chemical processes.
The image shows a schematic representation of oriented external electric-field (OEEF) in an electrostatic catalysis (top panel), and copper (Cu+)-catalyzed click cycloaddition (bottom panel) in a confined microfluidic channel between two gold electrodes. The azide moiety (1) is immobilized on the gold surface via thiol-gold chemistry, and the ferrocene alkyne derivative (2) is flowed continuously to avoid its depletion on the functionalized gold surface. b, c Schematic drawing showing parts of the microfluidic cell prior to its assembly (in panel b) and the assembled microfluidic cell with a section-cut in the top part to demonstrate the confined reaction area formed between two gold electrodes using a spacer (in panel c).
REFERENCE
You may also like...
The (extracellular) matrix is viscous and it matters
2024
Engineering Sciences
Artificial Intelligence reconstructs information about past climate extremes
2024
Experimental Sciences & Mathematics
What is happening in our minds when we understand sentences?
2024
Humanities